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Statement of Achievements

This thesis implements a hyperspectral image classification method based on deep neural

network. It constructs a deep neural network model and implements processing and deep

learning of image information with multi-dimensional spectral channels. It can classify

the earth surface objects represented by image pixels with high accuracy and keep the

complexity of time and memory within a relatively low level.
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Abstract

Hyperspectral image is a commonly used technique for earth surface survey in ecology,

mining, and hydrological application. Compared with other survey methods, it has the

advantage of lower cost and faster data collection. Briefly, it is an image form that

contains hundreds of narrow spectral channels in every single pixel, which is a measured

value of the corresponding wavelength. By processing the spectral and spatial informa-

tion in the hyperspectral image, each pixel and the surface objects they represent will

be identified and classified. At present, the most commonly used method for processing

hyperspectral images is based on deep learning. However, due to some reasons, such

as the defects of neural network design and fewer available training samples, the per-

formance of classification needs to be improved. My main contribution in this thesis

is that: 1)A preprocessing of the presentation extraction on hyperspectral image data

set is implemented, which is utilized to e�ciently extract the spatial and spectral in-

formation of hyperspectral images. Propose an improved extraction technique on edge

pixels, which includes more accurate spatial information. 2) Propose a deep convolu-

tional neural network model for hyperspectral image classification. Many techniques,

such as dropout and regularization, are applied to optimize the neural network perfor-

mance, solving problems like overfitting, and the small mount of training samples. 3)

Experiments are conducted on actual hyperspectral image data set, and compared with

other peoples previous work. A high classification accuracy is obtained as the result.
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Chapter 1

Introduction

Hyperspectral image (HSI) refers to an image form that contains hundreds of narrow

spectral channels in every single pixel. These data are collected from the surface of the

Earth, simultaneously recorded by sensors of artificial satellites which has been placed

into the planet orbit. This method, or called space-based remote sensing, relies mainly

on the fact that information can be collected from electromagnetic energy fields radiated

from the planet’s surface, especially from the spatial and spectral signals [1]. The infor-

mation collected by hyperspectral image sensors in pixels level accuracy is represented

by vectors where each data is a measured value of the corresponding wavelength. The

size of the vector is determined by the number of spectral channels of the sensors.

According to [2], HSI system sensors are mostly deployed to sense a wide range of

spectral signals, especially the middle infrared wavelength. For hyperspectral images,

the number of spectral data channels can usually reach hundreds. Basing on the fact that

every object of material has its unique characteristic of spectral reflection, these detailed

and complex data can provide the possibility for people to research associated imaging

classification tools to accurately identify Earth surface objects[3][4]. This method does

not distinguish objects by visual means but instead collects and senses a series of spectral

mixtures emitted from di↵erent closely spaced objects. Then, by analyzing the di↵erence

in the distribution of energy at di↵erent wavelengths in each pixel, the objects of di↵erent

materials are distinguished or classified.

The contribution I made in this thesis are as follows:
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1)A preprocessing of the presentation extraction on hyperspectral image data set

is implemented, which is utilized to e�ciently extract the spatial and spectral

information of hyperspectral images. Propose an improved extraction technique

on edge pixels, which includes more accurate spatial information.

2) Propose a deep convolutional neural network model for hyperspectral image

classification. Many techniques, such as dropout and regularization, are applied

to optimize the neural network performance, solving problems like overfitting, and

the small mount of training samples.

3) Experiments are conducted on actual hyperspectral image data set, and com-

pared with other peoples previous work. A high classification accuracy is obtained

as the result.

This thesis will introduce the background of the project, show the design details of

the solution, and then give a comprehensive analysis. The chapter 2 will introduce

the background and literature review of this field. It includes hyperspectral image and

its features, as well as the classification methodologies of deep neural network, while

enumerating and introducing the researches and achievements that have contributed

during the forming process. In chapter 3, the detail of the proposed neural network

design will be introduced. In chapter 4, I will analyze this model and compare it with

others. In chapter 5, based on the strengths and weaknesses, I will point out the future

development directions and the parts that can be considered to improve.
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Chapter 2

Literature review

2.1 Introduction

Deep learning is a technology that implements machine learning. It can be understood as

a neural network structure with multiple hidden layers[5]. Convolutional neural network

is one kind of deep learning neural network, which has become a hot topic in the field

of speech analysis and image recognition. The spectral information contained in the hy-

perspectral image not only greatly improves the information richness, but also provides

a possibility of more reasonable and e↵ective analysis and processing in the process-

ing technology. This chapter will introduce hyperspectral image, neural networks and

convolutional neural networks, including their features and applications. In addition,

a literature review of hyperspectral image classification based on deep neural networks

will also be introduced.

2.2 Hyperspectral Images

2.2.1 Introduction

Hyperspectral image is a form of image with a few relatively broad wavelength bands is

produced by multispectral remote sensors[6]. Compared to normal color images (three

wavelength information, RGB color model), dozens or hundreds of narrow, adjacent

spectral bands data in each pixel are collected simultaneously. These measurements can
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be derived as a continuous spectrum for each image pixel, as shown in the Figure 2.1.

For di↵erent materials and objects on the earth’s surface, sensors produce a di↵erent

continuous spectrum. Through neural network classification techniques, measurements

of certain types of ground materials such as vegetation or minerals can be identified

and classified[7]. This is also the technical foundation of applications of hyperspectral

images in many fields.

Figure 2.1: Hyperspectral image

2.2.2 The Imaging process

Hyperspectral images are collected by devices called spectrometers through the com-

bined use of two technologies, spectroscopy and the remote imaging of Earth surfaces[8].

Spectroscopy is a science that studies reflected light, emitted light, and their wavelength

changes from materials. The optical components in Spectrometers divide the light enter-

ing the lens into many di↵erent wavelength components. Each wavelength component

is measured by di↵erent sensors. With the integration of a large amount of spectral

information, the data of this measured ray in a spectral range can be obtained. Remote

imaging refers to the process of collecting spatially related images by spatially moving

sensor platforms over the Earth’s surface[9]. In this way, hyperspectral images with both
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spatial and spectral information are generated. The optical and sensing processes are

shown in Figure 2.2.

Figure 2.2: Schematic diagram of Imaging process

2.2.3 Curse of dimensionality

In the domain of hyperspectral images spectral information, vectors are used for repre-

senting pixels, whose components record corresponding specific wavelengths. The fixed

number of spectral bands in sensors capability spectral bands determine the size of vec-

tors. Compared to ordinary multispectral images, hyperspectral images have the ability

to record hundreds of spectral channels. The direct problem caused by the high number

of spectral channel is that computers process at high loads, which will inevitably lead

to the drawbacks of larger operational energy consumption and a long time spent[7].

Apart from the unnecessary computational load, theoretical and practical problems will

arise with the increasing spectral dimensionality. This kind of significant challenges

machine learning faces is referred to as the Hughes e↵ect[10]. In machine learning cases

that trained by limited and fixed number of training samples, its predictive power will

reduce as the dimensionality increases[11].
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Figure 2.3: Finite data set accuracy

According to the theory of high-dimensional data analysis indicated by Hughes, G

(1968)[12], for fixed sample pattern size n, the accuracy first begins to rise with measure-

ment complexity m increases. Shown in Figure 2.3, it ultimately falls back as n/m due

to the precision of the probability estimates mono-tonically degrades. Because of this

fact of decreasing accuracy, compared to ordinary multispectral images, hyperspectral

images is still a challenging task.

2.2.4 Limited amount of labeled training data

Another vital problem for hyperspectral images classification techniques is the limited

amount of available training data (labeled data). Compared to the relatively simple col-

lection process (collected by satellite sensors), the collection process of labeled training

data is accompanied by ground campaigns, which is time and labor consuming[13]. In

machine learning, overfitting is likely to occur in the case of insu�cient training data,

resulting in the result of learning to be too complicated (too many parameters relative

to the number of observations) and too perfect to match the training data 14]. The ap-

pearance of overfitting also means this model has poor predictive performance applying

to the unknown data. However, the model should apply to generalised situations rather

than just the existing data used in training.
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2.2.5 Complex light-scattering mechanisms

The e↵ects of the atmosphere are ubiquitous in the imaging process, and even relatively

clear atmospheres interact with the incoming light and light reflected by objects. These

interactions reduce the energy of incoming light reaching the earth surface objects at

some wavelengths and reduce the energy they transmit to satellite sensors. Because of

absorption of gases and scatting of molecules, the transmittance rate of atmosphere is

reduced.

Figure 2.4: Atmospheric transmittance versus wavelength

Figure 2.4 illustrates atmospheric transmittance rate versus wavelength for atmospheric

conditions[9]. Obviously, because of the combined e↵ects of these, water and carbon

dioxide cause the energy of some bands to be almost completely reduced. Therefore,

hyperspectral sensors can then get so little useful information on this wavelength range.

In the data set named ”India pines” used in this thesis, the corruption problem of the

image due to water absorption has been solved, i.e. these bands are usually manually

removed in the data preprocessing step[14].

Figure 2.5 is the aerial maps over the earth surface (a) and the initial classification

maps(b) for di↵erent data set (the above is the Indian Pines image, the below is the

Pavia University image)[15]. Obviously, noisy scatter points appear in the images, which

caused by some complex light-scattering e↵ects.
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Figure 2.5: Aerial maps and initial classification maps

2.3 Convolutional Neural Network

The human brains do well in dealing with classification and identification-related tasks.

For image classification and patterns recognition, feature extraction(FE) is one of the

most core technologies[10]. A lot of researchers have attempted to build image FE

systems which are comparable to or better than human brains. Deep learning is a

new-fashioned artificial intelligence. The deep learning based models typically are built

with multi-layers(greater than three layers). Through this multi-layers structure, deep

learning models can express more complex data, such as images, text, and audio as input.

A class of models is involved in deep learning method, including DBN[16], SAE[17] and

CNN.
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Inspired by neuroscience, convolution neural network (CNN) is one special type of deep

learning model. In the field of image classification and recognition, CNN is considered

as a more outstanding deep learning model, and it can have good performance in HSI

feature extraction[15]. There are two unique aspects, local connections, and shared

weights, make CNN architecture di↵erent from other learning patterns. Figure 2.6 shows

the shared weights in CNN.

Figure 2.6: Shared weighs in CNN

According to Y. Chen (2016)[15], Local connections (illustrated in Figure 2.6-Fig. 1)

mean that every three adjacent neurons on (m-1) th layer are connected to neurons on

upper m th layer. Shared weights (illustrated in Figure 2.6-Fig. 2) means that same

colour indicating the same weight. These features can help CNN architecture in image

classification and extraction to have better generalisation ability. A general and simple

CNN model consists of a convolution layer and a pooling layer. Deep CNN is contracted

in a stacked manner by multiple layers of convolution and pooling.

Convolution layer:
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Figure 2.7: Convolution layer formula

The above Figure 2.7 formula shows a neuron vx
ij

at position x of the j th feature map

in the i th layer; m index that connections between feature maps in the (i� 1) th layer

and current map; wp

ijm
is the weight between p position and m feature map; pi is the

width of the kernel toward the spectral dimension; bij is the bias of j th feature map in

the i th layer.

Figure 2.8: Brief example of convolutional layer

Figrue 2.8 shows a simple example of convolutional layer. Its input volume is (5*5*3),

which is expened to 7*7*3 with zero value padding. The main part of this convolutional

layer are 2 filter. The filters are in size of 3*3*3, with 2 biases. Inadditional stride of

this convolutional layer is 2 , which defines filters move 2 pixels every time. By this way,

the output has the size of 3*3*2.

Pooling layer:
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Figure 2.9: Pooling layer formula

Pooling layer provides invariance by reducing feature map resolution. The above Figure

2.9 formula shows the most common max pooling, is u(n, 1) the window function to the

patch of the convolution layer; is the maximum aj in the neighbourhood.

Figure 2.10: Brief example of pooling layer

Figrue 2.10 shows a simple example of pooling layer. Max pooling is one of the most

common used pooling method. In this case it select the maximum value in every 2*2

matrix.

In addition, all layers in CNN models are trained by the back-propagation algorithm,

which calculates the error contribution of each neuron after processing a batch of data.

Back-propagation algorithm can calculate the gradient descent optimisation algorithm

and distribute the error at output back through the model layers[18]. Since known and

expected input of each value is required, the back-propagation algorithm is categorised

as a supervised learning method.

To reduce or eliminate negative e↵ects of the curse of dimensionality, feature extraction

(FE) is deemed to be an e↵ective method[15]. In the spectral representation, due to the

high spectral correlation (neighbouring spectral data can represent similar materials),

discriminating materials usually utilise this fact which group in this spectral space.

On the other hand, in the spectral representation, due to the high spatial correlation

(adjacent pixels can be most likely identified as similar or exactly same materials),

discriminating materials can also apply this fact which group in spacial space[6]. The
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methodology of feature extraction is based on these representations, which have been

widely used in dimensionality reduction. The most commonly used methods are to

physically select the most spectral information bands or use principal component analysis

(PCA) and minimum noise fraction (MNF) transformation[8].

To avoid machine learning tends to overfitting, some additional techniques are considered

to be necessary (e.g. cross-validation, regularisation[15], early stopping[19], pruning,

Bayesian priors on parameters, model comparison, or dropout[20]). The main technical

basis for these technologies is either (1) a set of clear mechanisms for penalising models

that are too complex and potentially overfitting, or (2) a set of designed data not used

for training, which is assumed to simulate the typical test data, are used for testing the

generalisation ability of the model.

To address such problems that the spectral characteristics of the observed object are af-

fected by the unknown atmospheric scattering, deep architecture models are considered

as a helpful choice. Besides the interactions between atmospheric and lights, other fac-

tors such as undesired scattering from other objects and intraclass viability can increase

di�culty level for e↵ective hyperspectral data feature extracting. Inherently, in view

of complex light scattering mechanisms of objects, hyperspectral data is nonlinear[8][7],

which makes those methods originally designed for linear transformation no longer suit-

able. On the other hand, manifold learning is attempting to find the intrinsic structure

of nonlinear data, which could have positive improvement e↵ects to hyperspectral im-

ages feature extraction[21], namely the nonlinear data can be processed and presented

by kernel-based algorithm. Kernel-based algorithm provides a possibility to convert lin-

ear problems to non-linear problems by mapping the raw data into higher dimensions.

The advantage of deep architecture is known that it can potentially lead to more ab-

stract features at high levels than other models. This ability is generally robust and

invariant[15].

2.4 The Development of HSI Classification

In the development process of hyperspectral image development, initially, the vast major-

ity of researchers put the focus on feature extraction by analysing spectral information.

These methods include principal component analysis (PCA)[22], independent component
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analysis (ICA)[23], linear discriminant analysis[24]. These methods use linear analysis

to transform the input data and attempt to exploit potential features. However, con-

sidering the e↵ects of atmospheric and natural objects in hyperspectral imaging ( the

spectral information of HSI is nonlinear), these linear analytical methods perform not

outstanding.

Since 2000, the manifold method has been introduced into the study of HSI. The manifold

method is for non-linear data, trying to dig out the intrinsic structure of nonlinear data,

which is of great benefit to feature extraction and further improvement to the accuracy

of classification. In other words, kernel-based algorithm is used for data representation,

so that the nonlinear data can be addressed. In the higher latitude Hilbert space, the

kernel-based method establishes a mapping of the raw input data, in which the nonlinear

problem can be dealt with in a linear way[15].

Compared to the spectral data analysis, incorporating HSI spatial information into HSI

analysis can help to achieve better FE performance (high spatial and spectral correla-

tion). In recent years, the increasingly advanced hyperspectral imaging technology has

the ability to obtain high spatial resolution images[7]. High-precision spatial information

has had a greater impact on the performance of the spectral space feature extraction

method in the classification[25]. A proven example is a study did by M. Fauvel (2008),

who introduced a spacial method into his research based on the fusion of morphological

operators and support vector machine (SVM). Then the classification accuracy of his

model greatly increased. However, most of the current methods of hyperspectral images

research are developed with only one-layer processing structure, which does not meet the

needs of higher feature extraction capability. In the commonly used feature extraction

classification methods, PCA and ICA can be regarded as single-layer methods; linear

SVMs and logistic regression (LR) can be regarded as single-layer classifiers; decision

tree can be considered as two-layers methods.

Recently, the deep learning method has been widely considered as an e↵ective FE method

implementation. By extracting the potential abstract feature on higher level, it can

e↵ectively solve the deformation caused by the scattering from atmosphere and other

objects[15]. Some researchers have already done some work on deep models. In 2004, Y.

Chen published a deep learning method named stacked autoencoder(SAE)[26]. Then in

2015, he proposed another deeper method called entitled deep belief network (DBN)[27].
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Because the deep models have a strong ability to extract features, their classification

accuracy is relatively high. However, due to the deep models require a large amount of

training data, and the available HSI data is indeed limited, so there is still a great room

for improvement.

2.5 The Significance and Purpose of This Research

Considering the application of hyperspectral images in various areas and the important

role it plays in them, any improvement in performance in terms of hyperspectral images

classification and identification can produce significant technical and economic value.

In the past, some shortcomings of classification models are obvious. For example, some

models cannot be applied to the multi-information channels of hyperspectral image, some

models are lack of the ability to analyse nonlinear data, or some models are obstructed

by a limited amount of training data. And all these problems in the CNN deep model

are considered can be addressed.

Therefore, the purpose of this study is to establish a deep learning model based on

CNN to deal with high-dimensional data of hyperspectral image in an e�cient FE way,

and this model needs to overcome the problem of high-dimensional data, the processing

problem of nonlinear data, and rare labeled training data.
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Chapter 3

Methods

3.1 Introduction

This chapter will illustrate the design of the program from the aspects of the development

environment, data set selection, neural network model construction and data processing

procedures. They will well reflect the design ideas and advantages of the application of

deep neural network on hyperspectral image classification in this thesis.

3.2 Development environment

3.2.1 Python

For the neural network model that implements machine learning, several commonly used

programming languages are Python, R, MATLAB, Ruby, and C++. Considering the

ease of use of programming languages, learning costs, language performance, and the

number of third-party libraries This project decided to use Python as a programming

language for development. Python is an interpreted language, which greatly facilitates

the process of program writing. Due to its dynamic type system and garbage collec-

tion features, it can greatly improve the e�ciency of machine learning, which requires

extensive prototyping and iterative research. Python also has a large number of high-

quality third-party libraries, such as NumPy, SciPy for math operations, MatplotLib

and SeaBorn for visualization, and TensorFlow, Theano for machine learning. This can

15



save development time and keep the focus of research on the structural design of the

model.

3.2.2 Tensorflow

Considering reducing the amount of code lines and development complexity in the pro-

cess of neural network development, this project chose to use an external open source

software library. TensorFlow is arguably one of the best libraries in a neural network.

TensorFlow is a Python external structure package developed by Google. It is also an

open source software library that uses data flow diagrams for numerical computation. Its

task is to train deep neural networks. By using TensorFlow, I can quickly Familiar with

neural networks, greatly reduce the cost of development and development di�culties of

deep learning. TensorFlow provides a Python API(Application programming interface)

for compatibility with the use of the Python language, which can use an ’import’ field to

refer to the library. In addition, the open source nature of TensorFlow allows everyone

to use and maintain it and consolidate it. It enables it to be updated quickly and its

functionality can be improved.

3.2.3 Keras

Keras is an open source neural network library written for Python that performs very

well in terms of modularity and scalability. The use of Keras can make the construc-

tion of a neural network model simple and fast, because he defines many layers in the

neural network model, and has very detailed documentation to explain the specific us-

age. In addition, it provides the tf.keras API, which is well compatible with Tensorflow.

Therefore, in this project, Keras will be used in conjunction with Tensorflow.

3.3 Data set introduction and processing

A good training set plays an important role in obtaining e�cient neural networks. With

the problem that the collection process of labeled training data is accompanied by ex-

pensive ground campaigns, this project has to select one from a limited number of public

available hyperspectral image training sets. Therefore, this project selected a dataset
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from the Purdue University Research Repository (PURR)[28]. This scene was acquired

by the AVIRIS(Airborne Visible/Infrared Imaging Spectrometer) sensor at the Indian

pine test site in northwestern Indiana and represents a 2 mile⇥2 mile area with 20 me-

ters spatial resolution. The Hyperspectral image is 145 ⇥ 145 pixels and contains 220

spectral reflectance bands with wavelengths ranging from 0.4 to 2.5⇥ 10�6 meters.

In this scene, one-third of the vegetation is crops (mainly corn and soybean), and the

remaining two-thirds are forests and shrubs. This Hyperspectral image was taken in June

and the crop is in the early stages of plant growth. Therefore, the plant coverage rate is

below 5 percent. In the upper part of the scene, there are two two-way highways. In the

middle, there is a railway across. In addition, there are some houses, infrastructures and

roads are scattered and distributed in the scene(shown in Figure 3.1). Although there

are spectral information variations caused by occlusion between objects, the objects in

the scene basically can be divided into 16 classes. The training data set classifies pixels

as following Table 3.1:

Figure 3.1: Aerial maps and groundtruth classification maps of Indian Pines

3.3.1 Feature extraction

From the dataset obtained from the publicly available open project, a hyperspectral

image and an image of the actual ground classification of each pixel are provided. This

thesis implements the extraction on the hyperspectral image and the method of training

the data with the labeled data set[28].

If only one pixel is selected eevey time for feature extraction, and all its spectral channel

information is extracted. The specific operation is shown in Figure 3.2 and Figure 3.3. In

this method example, there is an 11*11 pixel image with 7 spectral channels is performed

by the single-pixel feature extraction. On the other hand, a groundtruth classification
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# Class Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Table 3.1: Classes in Inidan Pines data set

image indicates that all pixels can be classified into three classes (Class 1, 2, 3) and a

none-classification class. After extraction, a data group with the size of 1*1, which has 7

spectral channels information, is obtained. By comparing the classification situation of

the same position in the labeled dataset, we can know that this single-pixel data belongs

to class 2. At the same time, any pixels that cannot be classified will be ignored. After

traversing all positions in the image, we know that 36 sets of data belong to class 1,

36 sets of data belong to class 2, 30 sets of data belong to class 3, and 19 sets of data

cannot be classified into class 1, 2 or 3. These data groups will then be further processed

as input to the convolutional neural network model.

In this thesis, another feature extraction method called Neighbourhood Pixel Extraction

are applied[29]. That is, not only a single pixel and its spectral information is processed,

but also a certain range of adjacent pixels around the selected pixel. In Figure 3.4 and

Figure 3.5, the same multi-channel image with the size of 11*11*7 is extracted using

this method. In this example, all the pixels in the 3*3 range around the selected pixels

and their spectral channels information is extracted to output a data set of size 3*3*7.

During the traversal extraction process, some of the points at the edge of the image

obviously cannot directly use the neighboring pixel extraction method in which the

selected pixel is centered. The processing method for the edge pixels will be described

later.

18



Compared to the single pixel extraction method, the neighbouring pixels are more able to

retain the spatial information of the hyperspectral image. In addition to a large amount

of spectral information, the surface objects represented by each pixel in the hyperspectral

image also have spatial continuity ( Such as minerals are always concentrated in a certain

area, and plants always appear in certain areas.) By combining these two kinds of

information, the advantages of hyperspectral images in spectral information and spatial

resolution can be fully utilized.

Figure 3.2: Single pixel feature extraction

Figure 3.3: Labeled data after extracting

Figure 3.4: Neighbouring pixels feature extraction
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Figure 3.5: Labeled data after extracting

3.3.2 Edge problem in feature extraction

When the traversed patch window moves to the edge of the image for feature extraction,

the problem of the edge extracting needs to be solved. The edge of the patch has

exceeded the edge of the actual image, some pixels in the patch cannot be copied from

the image. Currently, there are two ways to solve this problem: 1)Ignore the pixels

near the edge[15]. 2)Padding in the remaining patch sections with the selected central

pixel(As my schoolmate Zhiwang Zhang’s thesis on 2017[30]).

The first method brings the problem that a large amount of pixel information is dis-

carded, which leads to a decrease in the learning e↵ect of the neural network and a

decrease in the classification accuracy. In addition, the problem of not enough available

training data of hyperspectral image will be more serious. This method of extracting

with discarding pixels on edge is shown in Figure 3.6. We can see that the green pixels

represent the pixels that can be extracted by the patch, and other parts are discarded.

In the figure, an 11*11 image, if a patch with a size of 5 is used for extraction, 40.5% of

the pixels are available, about 59.5% of pixels were discarded.

Figure 3.6: Extracting with discarding pixels on edge
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The second method uses the selected center pixel to fill in the non-coinciding parts

between patch and image. This method partially solves the edge extraction problem

and obtains a patch containing edge pixels, but the rationality of this arbitrary filling

worth to be reconsidered. The information of the filled patch part is consistent with the

selected pixel of the center, but it is not necessarily spatially and spectrally related to

the real image edge. The actual situation is that, the actual surface objects outside of

the edges of image highly likely to be identical to the objects represented by the image

edge pixels. By this method, the spatial information contained in patchs could be seen

as wrong, which will a↵ect the training of neural networks. This method of extracting

with padding the centred pixel is shown in Figure 3.7.

Figure 3.7: Extracting with padding the centred pixel

The thesis introduces a new method to solve the edge processing problem. It is based on

patch pixel filling as well, but uses the image edge pixels to fill. The spectral information

of the pixels at the edges of the image will extend parallel to or vertically (copying )

into the patch. If patch appears in the four corners of the image, the four pixels in the

corner of the image will be copied along with the diagonal direction. The method is

shown in Figure 3.8.
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Figure 3.8: Extracting with padding the pixels on image edge

3.3.3 Data set splitting

Because of the limited number of training data sets, this 145⇥ 145 pixel hyperspectral

image needs to be fully utilized. By setting a patch size of 11 pixels, the Indian pines

scene is extracted as spatially adjacent smaller images. The length and width of the

pixel are 11 pixels and the depth is 220 (that is, 220 spectral channel data representing

di↵erent wavelengths). Every patche will be labeled into one specific class, while ignoring

all patches with unknown land-cover types for the central pixel. It embodies the design

of incorporating spatial information of pixels into a neural network for analysis. Then,

based on the ratio of 20%, 40%, and 40%, make a split for training, validation and testing

data set for classes. With this method of processing data set, the training, validation,

and testing data sets obtained occupy 2.18⇥ 109 bytes (2.18GB) of space on disk, while

the original hyperspectral image of Indian pines occupies only6.29⇥ 106 bytes (6.3MB).

of storage space.

3.3.4 Zero mean Normalization

Thesis performs zero-mean normalization on the raw data in the data set[31]. The

deep neural network involves many stacking layers, and the updating of parameters on

each layer leads to the change of the input data distribution on the upper layer. The

distribution of data will change very dramatically, which is considered to have a bad

influence on the performance of deep neural network. Therefore, in order to obtain

a higher performance model, the input data needs to be handled with care, and the

distribution of the data needs to be normalized.
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In the normalization method, the data is processed in two steps, re-scale parameter, and

the re-shift parameter. In the re-scale parameter phase, all spectral data is scaled into

the range of 0 to 1 (the original minimum value is set to 0, the original maximum value

is set to 1, and then all data is remapped to this range in the original ratio.) In fact, in

the Indian Pines data set, the spectral data range is already in the 0 to 1 range.

In the re-shift parameter phase, all data is slid vertically to the x-axis to make their

mean value is 0 (shown in Figure 3.9 and 3.10). The formula to calculate the new merit

formula as follows:

Figure 3.9: Formula of zero mean normalization

Vnew is the new value, Ux is the mean value, Sx is the standard deviation of all data.

Both of them can be calculated from data set. After zero-mean normalizing, all data in

same band will have a mean value of 0.

Figure 3.10: Re-shift parameter phase in zero mean normalization

3.4 Structure

3.4.1 Layers

By processing the data set before, we select the K neighborhood of the current pixel to

form the input of the deep CNN model. A complete CNN consists of a convolutional

layer and a pooling layer. The deep CNN used in this project is constructed by stacking
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multiple convolutional and pooling layers. Because the size of the image is not large

and the resolution is not high, this neural network selects a 3 ⇥ 3 filter for convolution

and a 2 ⇥ 2 filter for the pooling. The image passes through the stacked multi-layer

convolution and pooling and is converted into the form of feature maps. These features

contain spatial and spectral information of all input images. Then, with flatten, dense

and dropout operations, these features are processed by the fully connected layer and

finally classified into 16 classes. This project uses the LR classifier structure with soft-

max as the output layer activation to obtain the activation of all output elements whose

sum is 1. Through this method, all outputs appear as conditional probabilities. The

size of the output of the LR is same to the number of classification classes (the number

of classification classes is 16 according to the training data), and the input layer is

determined by the size of the output layer of the upper deep CNN structure.

The following Table 3.2 shows the structure of this deep CNN model, the output shape

of each layer (the input shape is the output shape of the previous layer), and the number

of parameters.

Layer (type) Output Shape Number of Param
conv2d 1 (Conv2D),

* Input Shape = (220,11,11)
(128, 11, 11) 253568

activation 1 (Activation) (128, 11, 11) 0
conv2d 2 (Conv2D) (128, 11, 11) 147584
activation 2 (Activation) (128, 11, 11) 0
max pooling2d 1(MaxPooling) (128, 5, 5) 0
dropout 1 (Dropout) (128, 5, 5) 0
conv2d 3 (Conv2D) (64, 5, 5) 73792
activation 3 (Activation) (64, 5, 5) 0
conv2d 4 (Conv2D) (64, 5, 5) 36928
activation 4 (Activation) (64, 5, 5) 0
max pooling2d 2 (MaxPooling2) (64, 2, 2) 0
dropout 2 (Dropout) (64, 2, 2) 0
flatten 1 (Flatten) (256) 0
dense 1 (Dense) (128) 32896
activation 5 (Activation) (128) 0
dropout 3 (Dropout) (128) 0
dense 2 (Dense) (16) 2064
activation 6 (Activation) (16) 0

Total params: 546,832
Trainable params: 546,832
Non-trainable params: 0

Table 3.2: Architecture of the neural network in this thesis
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Among these structures, layers are carefully designed and have significant e↵ects on the

learning performance of the model. The following paragraphs will list these designs and

introduce their principles.

3.4.2 Relu and dropout

The activation function introduces nonlinear factors to the neuron so that the neural

network can fit any nonlinear function well, so that the neural network can be applied to

many nonlinear models. There are many di↵erent activation functions available to apply,

including Sigmoid, Tanh, and Softmax. In this neural network model, an activation

function called ReLu is in use[? ]. It will return 0 for all negative inputs. All positive

inputs are returned directly to neurons. Many previous studies have shown that the

application of ReLu in CNN can significantly improve performance [35]. The ReLU

function has a low computational complexity (no division is involved). The output

of some neurons is 0, which results in the sparsity of the network and reduces the

interdependence of parameters, thus alleviating the occurrence of overfitting problems.

Figure 3.11 shows the ReLu activation function in cartesian coordinate system.

Figure 3.11: ReLU activation function

Another method to reduce the possibility of overfitting is Dropout. According to Hin-

ton’s 2010 description of the Dropout method, neural network elements are temporarily

dropped from the network during the training of deep learning networks. Based on a

certain probability, it sets the output of some hidden neurons to zero, which means that

the discarded neurons do not work in the forward propagation and they do not partic-

ipate in the backpropagation process. This model uses the Dropout method multiple

times. The parameters are set to 0.5, which means that each neuron has a 50 percent
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probability of being removed, which in this way can make each neuron’s training inde-

pendent of the others, and also makes the mutual influence between features weakened.

Figure 3.12 shows a simple neural network and the same neural network with Dropout

Figure 3.12: Normal neural network and neural network with Dropout

3.4.3 L2 regularization

Due to the limited amount of available training samples in the classification of HSI

using deep neural networks, overfitting problems often occur. Overfitting refers to using

excessive parameters when the model tries to fit a data set. Compared to the total

amount of data available, an overfitting model is su�ciently complicated to fit the data

perfectly. The overfitting problem means that the neural network performs extremely

well when it is running on the training data set, but it runs poorly on the test data,

which leads to low classification accuracy. To avoid this situation, one technique called

L2 regularization is applied to this deep CNN model. The idea of L2 regularization

is to add an additional regularization term to the cost function. The L2 regularization

method reduces the sum of the squares of the following equations to reduce cost function.

LR is used as a method for adjusting weights and deviations in backward propagation.

In this paper, the L2 regularization method is optional. Figure 3.13 shows the formula

of L2 regularization.

Figure 3.13: L2 regularization formula
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C0 represents the original cost function, and the following item is the L2 regularization

term. m is the size of mini-batch. N represents the number of weights, and the parameter

� can be change according empiric.
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Chapter 4

Results

4.1 Training

Throughout the deep CNN structure, the back-propagation algorithm is used for training

model, from the convolutional layer to the pooling layer. This method calculates the

gradient of the cost function for all the weights in the network. This gradient is fed

back to the optimization method to update the weights and minimize the cost function.

Backpropagation requires to know the expected output for each input value to calculate

the cost function gradient. Therefore, it is considered as a supervised learning method.

With the powerful ability of constructing the neural network model, Keras library can

easily set the parameters required for back-propagation training, including the learning

rate, momentum (parameter that accelerates SGD(Stochastic gradient descent) in the

relevant direction and dampens oscillations) and learning rate decay over each update(It

can make the rate of gradient descent is gradually reduced. The Cost function keep

steady within a very small range to obtain a satisfactory value).

4.2 Result of testing

A total of 300 epochs were processed in the model. During each epoch, all training

data experiences a forward and back propagation and all parameters are updated once

time. We can derive the trend of loss and classification accuracy in 300 epochs(shown in

Figure 4.1 and 4.2). In the figure, the classification accuracy rapidly increases, reaching
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more than 90% after the 30 th epoch, and then gradually approaches 1.0. During the

300 epoch periods, the highest value reached 0.9943. At the same time, the value of loss

gradually approaches to 0.This indicates that this model has relatively good performance

on classification.

Figure 4.1: Result: Loss versus epochs

Figure 4.2: Result: Classification accuracy versus epochs

The classification performance of this network can also be represented by a fusion matrix

as shown in Table 4.1. Table 4.1 shows the result after 300 epochs. The Confusion

matrix is a visual tool for supervised learning. Each column of the matrix represents

the prediction of a class, and each row represents the actual situation of a class. It
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can show the confusion level between di↵erent classes. In this Table 4.1 fusion matrix,

non-zero data is mainly concentrated near the main diagonal, which means that most

of the predictions for the samples are consistent with the actual situation. At the same

time, there are also some non-zero data appearing at other locations far away from main

diagonal, which indicates the prediction is wrong. However, compared to the non-zero

data on the main diagonal, the values of these data are low, which represents the error

rate of classification is relatively low as well.

Predicted

Actual

35 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1011 24 2 6 0 0 0 0 1 43 54 0 0 1 0

0 4 655 0 0 0 0 0 0 0 0 5 0 0 0 0

0 2 57 115 1 0 0 0 0 0 0 13 0 0 0 0

0 0 13 0 364 0 0 2 0 1 0 0 0 6 0 0

0 1 0 0 0 583 0 0 0 0 0 0 0 0 0

0 0 8 0 0 0 9 0 0 5 0 0 0 0 0 0

0 0 2 0 1 0 0 371 0 2 0 0 0 1 5 0

0 0 4 0 0 0 0 0 12 0 0 0 0 0 0 0

0 0 9 0 0 0 0 0 0 745 11 10 0 1 0 0

0 30 15 0 1 0 0 0 0 10 1903 5 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 467 0 0 0 3

0 0 0 0 0 0 0 0 0 1 0 0 163 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1011 0 0

0 0 0 0 2 5 0 1 1 7 0 0 0 3 289 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74

Table 4.1: Result: Confusion matrix

According to Table 4.1 confusion matrix, the classification prediction accuracy of this

neural network can be calculated for each class adn all classes. For each class, its

accuracy is calculated as:

Acci =
P

True
iP
Pi

For class i, its classification accuracy Acci is related to the true prediction P True

i
and

total prediction
P

Pi in this class.

For all classes, the total accuracy calculation formula is:
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Acc =
P

P
True

P
P

Which shows the total accuracy Acc is related to the sum of all true predictions in all

classes
P

P True and all predictions
P

P .

Accuracy of each class

1 0.9722222222222222

2 0.8852889667250438

3 0.9864457831325302

4 0.6117021276595744

5 0.9430051813471503

6 0.9982876712328768

7 0.4090909090909091

8 0.9712041884816754

9 0.75

10 0.9600515463917526

11 0.9689409368635438

12 0.9852320675105485

13 0.9939024390243902

14 0.9990118577075099

15 0.9383116883116883

16 1.0

Overall Accuracy 0.9530029297

Table 4.2: Accuracy on classes

The calculation results in Table 4.2 show that after training with 300 epochs, although

the classification results for each class are not the same, this neural network model shows

quite good ability for the classification of all classes.

31



Predicted

Actual

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1129 0 0 0 0 0 0 1 0 12 0 0 0 0 0

0 0 658 0 0 0 0 0 1 0 0 5 0 0 0 0

0 0 0 188 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 384 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 584 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 21 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 382 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 768 0 2 0 0 2 0

0 1 0 0 0 0 0 0 0 1 1955 0 0 6 1 0

0 0 0 0 0 0 0 0 0 2 0 470 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 164 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1011 1 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0 306 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74

Table 4.3: Confusion matrix of the best classifier in proposed CNN

The Figure 4.3 and 4.4 show the best classifier of the proposed CNN, which overall

accuracy reached 99.43%. It can be seen that in this classifier, both the overall accuracy

and the classification accuracy of each class have reached a very high level.
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Accuracy of each class

1 1.000

2 0.9886164623

3 0.9909638554

4 1.000

5 0.9948186528

6 1.000

7 0.9545454545

8 1.000

9 1.000

10 0.9896907216

11 0.9954175153

12 0.9915611814

13 1.000

14 0.9990118577

15 0.9935064935

16 1.000

Total Accuracy 0.9943847656

Table 4.4: Accuracy on classes of the best classifier in proposed CNN

4.3 Compare with other people’s work

Compare the best classifier of my proposed CNN structure with experiments data from

other people’s papers. According to Chen’s 2016 paper[15], their two models, 3D-EMP-

RBF-SVM and 3D-CNN-LR on the Indian Pines data set have overall classification

accuracy(OA) values of 96.92±0.81 and 97.56±0.43 respectively. According to the paper

of Lichao Mou in 2017[32], their two models, RNN-LSTM and RNN-GRU-PRetanh

on the Indian Pines dataset, have overall classification accuracy(OA) values of 80.52

and 88.63, respectively. According to the paper of Xiaorui Ma in 2015[33], their three

models, SOMP, MPM-LBP, and CDL-MLR on the Indian Pines data set, have overall

classification accuracy(OA) values of 92.00, 95.12, and 98.26 respectively.
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The specific comparison and classification accuracy of each class are shown in Table 4.5.

It can be seen that both the overall accuracy and the average accuracy of all classes, the

CNN model proposed in this thesis has certain advantages.

This thesis Chen’s 2016 paper Lichao Mou’s 2017 paper Xiaorui Mas 2015 paper

Class Proposed CNN 3D-EMP-RBF-SVM 3D-CNN-LR RNN-LSTM RNN-GRU-PRetanh SOMP MPM-LBP CDL-MLR

1 100.0 95.94 100.0 46.03 70.59 99.90 100.0 100.0

2 98.86 91.39 96.34 61.73 70.28 99.97 99.92 96.65

3 99.10 92.53 99.49 86.96 81.52 92.77 96.20 99.95

4 100.0 100.0 100.0 87.02 90.16 95.76 98.64 98.98

5 99.48 98.03 99.91 86.66 91.97 99.49 98.64 98.78

6 100.0 92.35 99.75 97.49 96.13 99.32 99.97 99.27

7 95.45 95.93 100.0 59.69 84.75 100.0 99.94 100.0

8 100.0 96.35 100.0 64.89 59.64 86.61 88.64 96.62

9 100.0 100.0 100.0 60.46 86.17 98.81 99.58 99.92

10 98.97 87.92 98.72 98.77 99.38 95.21 92.27 98.57

11 99.54 92.23 95.52 75.32 84.97 97.53 96.54 96.78

12 99.16 96.85 99.47 71.82 77.58 99.95 98.27 98.37

13 100.0 99.23 100.0 91.11 95.56 97.73 96.47 98.58

14 99.90 96.85 99.55 79.49 84.62 95.00 97.97 98.87

15 99.35 89.28 99.54 90.91 90.91 71.31 88.83 95.64

16 100.0 96.24 99.34 100.0 100.0 99.94 99.28 99.48

OA 99.43 96.92 97.56 80.52 88.63 92.00 95.12 98.26

AA 99.36 95.07 99.23 78.65 85.26 95.58 96.94 98.72

Table 4.5: Compare with other people’s work

4.4 Structural details and their performance

4.4.1 Patch size in preprocessing

In the processing process, the patch size determines the the mount of spatial and spatial

information of adjacent data are extracted every time. Because the purpose of this

extraction method is to obtain spectral and spatial consistency information within a

pixel and its neighboring pixels, the patch value should theoretically be determined by

the size of the ground object. For example, in order to classify the pixels representing

buildings in the image, a patch window that can contain buildings of a general size and

certain range of neighboring pixels is considered to be the most suitable. However, due

to the training speed and the occupation of computer resources, the setting of the patch

value is usually defined freely by the designer.

The thesis compares the CNN classification performance under three cases, where patch

values are 7, 11, and 15. The specific data is shown in the figure below.
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Figure 4.3: The input data generated by di↵erent patch sizes performs on CNN

In Figure 4.3, it can be observed that the classification accuracy variation pattern of

the extracted data generated by di↵erent patch sizes on the CNN is basically the same.

However, the larger the patch size indicates a faster-increasing accuracy change trend

(ie, approaching a high classification accuracy in the fewer epochs period). In the figure,

the line representing the patch size of 7 basically stopped the increase of accuracy near

the 85th epoch, while the line representing the patch size of 11 and the line representing

the patch size of 15 stopped rising near the 30th epoch.

However, the computer resources and training time of di↵erent epochs input data set

need to be considered. After data set preprocessing, the original Indian Pines data set

with a size of 6.3MB is extracted using the methods with patch sizes of 7, 11 and 15.

They are extracted into training + verification + test data sets of 882.9MB, 2.18GB,

and 4.05GB, respectively. Running on my laptop with a 2.4 GHz Intel Core i7 proces-

sor (approximately 32.08 GFLOPs), the time consumption for each epoch is about 6.2

seconds, 18 seconds, and 23 seconds. Taking into account the occupation of computing

resources and the consumption of training time, the thesis selects a patch size of 7*7

pixels. The network model can not only obtain high classification accuracy but also

reduce training and verification time.
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4.4.2 Edge problem in feature extraction

Compared to the traditional approach of discarding edge pixels, the edge extraction

method proposed by this thesis can retain more pixel space and spectral information.

For any extraction method with N as patch size and hyperspectral image with H*W,

(H�N+1)(W�N+1)
HW

% Pixels were extracted, and (1 � (H�N+1)(W�N+1)
HW

)% of the pixels

were abandoned. In the method described by Chen in the 2016 paper, they used a patch

of size 27 to extract the Indian Pines data set (145*145), then 67.35% of the pixels Was

extracted, and 32.65% of pixels were abandoned. If this edge processing method is used

in the thesis with patch of size 11, 86.68% of the pixels Was extracted, and 13.31% of

pixels were abandoned.

Considering that the distribution of each labeled class is di↵erent in the image data set,

this method of discarding the edge data has di↵erent e↵ects on each class. For example,

the pixels representing class 15 and class 3 that are mostly distributed in the edges area

of the image, then there will be only 69% and 83% of the pixels respectively will be

retained to generate feature extraction by this way. However, considering some pixels

are not classified into 16 classes, the figure is di↵erent from this simple expectation. The

detail is given in the Table 4.6 below.
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Class Actual object No Discarding Discarding pixels in FE Discarding rate

1 Alfalfa 46 46 0%

2 Corn-notill 1428 1428 0%

3 Corn-mintill 830 685 17.46%

4 Corn 237 221 6.75%

5 Grass-pasture 483 423 12.42%

6 Grass-trees 730 730 0%

7 Grass-pasture-mowed 28 28 0%

8 Hay-windrowed 478 478 0%

9 Oats 20 20 0%

10 Soybean-notill 972 924 4.93%

11 Soybean-mintill 2455 2350 4.28%

12 Soybean-clean 593 561 5.40%

13 Wheat 205 205 0%

14 Woods 1265 1265 0%

15 Buildings-Grass-Trees-Drives 386 265 31.34

16 Stone-Steel-Towers 93 93 0%

Total 10249 9712 5.24%

Table 4.6: Number of classes in Indian Pines when feature extracting

Compared to the method used by Zhiwang in the thesis in 2017, this thesis adopts the

same patch size, but adopts di↵erent patch padding methods. My proposed method

more emphasizes that the spectral and spatial information of the image edge pixels

extends into the patch. In his thesis, using the input patchs generated by that method

(padding patchs with centred pixel) as input, the overall classification accuracy of his

neural network model reached 99.2%. Compared to my best classification accuracy of

99.43%, the overall classification ability of two neural network is very close.

4.4.3 Dropout method

To solve the problem of overfitting, the Dropout method is introduced into the thesis.

The neural network unit was temporarily dropped from the network with a certain prob-

ability. In this section, the proposed neural network model (using Dropout technique)

and the same CNN model without Dropout technique are tested. Their experimental

results are shown in Figure 4.4 below.
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Figure 4.4: Proposed CNN without Dropout

It can be observed that this model without Dropout achieves a higher classification

accuracy within a shorter epochs period. Even at the 36th epoch, the accuracy rate

reaches 1.0, and this value is maintained continuously. The learning situation could be

regarded as overfitting. At this time, the training accuracy is 100%, and testing accuracy

is 97.80%. It can be seen that the Dropout method can prevent overfitting in the case

that there is not enough labeled data available for hyperspectral images.

4.4.4 Learning rate decay

In this network, one problem that can be expected and solved is the fluctuation of clas-

sification performance, that is, the unfavorable and abnormal fluctuation that appears

in the trend of loss and accuracy. In addition to the random fluctuations in the trend,

some large fluctuations are considered to be related to the network’s learning rate. In the

case of using a fixed learning rate, the solution represented by the network will converge

towards the optimal solution, but after many times of training, it will wander around,

and never really converge. Therefore, the concrete manifestation of this phenomenon is

the fluctuation that appears in classification performance.
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To solve this problem, in this neural network model, we have adopted a method called

learning rate decay, which is to set a floating point number for the learning rate decay

over each update. Through this method of slowly reducing the learning rate, the network

will gradually converge near the optimal solution with smaller learning rate, and pro-

duces smaller fluctuations in classification performance. In Figure 4.5 and 4.6, a same

neural network model with fixed learning rate is trained and tested. Some larger fluctu-

ations appear in the stable trends. The classification accuracy has drastically decreased,

and the value of loss has risen sharply.

Figure 4.5: Loss changes without learning rate decay
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Figure 4.6: Classification accuracy changes without learning rate decay(larger fluc-
tuations appearing)
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Chapter 5

Discussion

This chapter will discuss this deep convolutional neural network model from various

perspectives. Firstly, the result of testing will be evaluated. Then, the time and memory

complexity of the program will be discussed. Lastly, this model will be compared with

other models to obtain the directions for possible future improvement.

5.1 Results evaluation

The trend of classification accuracy and the value of loss in the 300 epochs are shown

in Figure 4.1 and Figure 4.2. Since the model adopts random numbers to set initial pa-

rameters, we can see that after the 1st epoch, the initial value of classification accuracy

is very low (0.2416). After that, the classification accuracy continued to increase and

approached a relatively high value at a fairly rapid rate. After 30 epochs, the classifi-

cation accuracy rises to about 90%. Then the e↵ect of learning gradually slows down.

Finally, near the 60 epochs, the classification accuracy almost stopped improving. In

the reminding epochs, there are only a few random fluctuations. We can observe that in

the 300 epochs period, the accuracy reaches up to highest value 99.76%, which means

that this convolutional neural network model is quite good for training samples.

In addition, the value of loss shows a trend of variations that is di↵erent from the clas-

sification accuracy. Loss functions express the discrepancy between the predictions of

the model being trained and the actual problem instances. In the backward propaga-

tion, the value of loss will determine how much to change the parameters in network.
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Similarly, due to the random initialization of the network, the loss value of shows a high

level(2.3599) after the 1st epoch, which means that there is a large di↵erence between

the initial predictions results and the actual values. After 30 epochs, the loss value drops

to about 0.2. Then the decline of the loss gradually slows down. Finally, loss nearly

stops falling around 60th epoch. In the reminding epochs, there are only a few random

fluctuations. It can be seen that the trend of loss value and classification accuracy are

inversely related, and there is consistency on the horizontal axis (within the same epoch,

the change of accuracy is consistent with the change of the loss value).

For the results, what we can expect is that with the number of epochs experienced by the

network increases, the accuracy of the network will increase as well, and eventually even

reach to 100%. However, in that case, the network may not be well applied to other

data set. So the learning network at this case is meaningless. We call that network

overfitting or overtraining.

5.2 Complexity evaluation

Looking back at previous studies and models of convolutional neural networks, many

innovations and improvements are closely related to improving time and memory com-

plexity. Therefore, analyzing the time and memory complexity of convolutional neural

networks can help future improvements and make the model becomes more e�cient.

5.2.1 Time complexity

Time complexity is a function that describes the running time of the algorithm. The

time complexity can be called asymptotic, that is, it describes the output value when the

input value approaches infinity. Its unit of measure is FLOPs (Floating-point operations

per second). The time complexity determines the training/prediction time of the model.

If the complexity is too high, it will lead to a lot of time spent on model training and

predicting. It can neither quickly improve models, nor can it make rapid predictions.

Time complexity for a single convolutional layer is shown in Figure 5.1:

M is the side length of the feature map generated from each convolution kernel; K is

the length of each convolution kernel; Cin is the number of channels for each convolution
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Figure 5.1: Time complexity of a single convolutional layer

kernel, that is, the number of input channels, or the number of output channels of the

upper layer; Cout is the number of convolution kernels that the convolution layer has,

that is, the number of output channels. It can be seen that the time complexity of each

convolutional layer is determined by the output feature map area M2, the convolution

kernel area K2, the input Cin, and the output channel number Cout.

Among them, the output feature map size M is determined by the four parameters of

input matrix size X, convolution kernel size K, Padding, and Stride. The mathematical

definition of M is shown in Figure 5.2

Figure 5.2: Size of feature map

Thus, time complexity for the entire convolutional neural network is shown in Figure

5.3 below:

Figure 5.3: Time complexity of convolutional layers

D is the number of convolution layers this neural network has, which is the depth of the

network; l is the l th convolutional layer of the neural network; Cl is the the number of

output channel(Cout) of the l th convolutional layer in the neural network, that is, the

number of convolution kernels in the layer; For the l th convolutional layer, the input

channel number Cin is the output channel number of the l � 1 convolutional layer.
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5.2.2 Memory complexity

Time complexity is a function that describes the resource of memory space of the algo-

rithm. Memory complexity includes the number of parameters of the model (the volume

of the model itself) and the size of the feature map of the output of each layer (this will

a↵ect the memory consumption of the model during operation). Memory complexity

determines the number of parameters of the model. Due to the limitations of the dimen-

sional curse, the more parameters of the model, the greater the amount of data needed

to train the model.

Figure 5.4: Memory complexity of neural network

Figure 5.4 shows the truth that the number of parameters(time complexity) of a neural

network is only related to K (the size of the convolution kernel), C (the number of

channels), and D (the depth of the neural network). and are independent of the size of

the input data. The input data does not a↵ect the memory complexity of the neural

network.

5.3 Improvement

With the development of neural network technology, deep neural networks have devel-

oped many variants, such as CNN, RNN(Recurrent neural network), Resnet(Residential

network), DenseNet(Densely Connected Convolutional Networks)[34]. These variants of-

ten incorporate many of unique structures, such as convolutional layers or LSTM(Long

short-term memory) elements. These new neural network models are mainly designed to

solve two problems that prevent further deepening of the neural network. They are over-

fitting (the optimization function falls into the local optimal solution) and the vanishing

gradient problem.

As the network gets deeper and deeper, the vanishing gradient problem becomes more

obvious. In the backpropagation process, the updated gradient cannot be e↵ectively

passed to the previous layer. Because of this, the parameters of the previous layers

44



cannot be changed, training and testing result get worse. A deep neural network model

ResNet proposes a solution that adds a mechanism, which is called identity mapping.

Identity mapping passes the current output directly to the next level of the network

(without adding any extra parameters). It makes a shortcut for data to skip the current

layer. This model greatly improves the e↵ectiveness of the backpropagation algorithm.

Another neural network called DenseNet can be seen as an improved version of this

design. Its skip-connection not only connects the upper and lower layers but also directly

realizes the cross-layer connection. The gradient obtained by each layer is the sum of

gradients from all the previous layers.

In fact, regardless of using which kind of network, they are often mixed in practical

applications. It is hard to tell which kind a network belongs to. We can expect that

with the progress of deep learning research in the future, more flexible combinations

and more network structures will be developed. Although these variants are diverse in

variety and structure, the purpose of all model designs is to solve specific problems. In

the future, the deep neural network model constructed in this thesis needs to focus on

feature extraction of high dimensional data and neural network gradient problem.
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Chapter 6

Conclusions

Hyperspectral image has great value in many fields, especially its application on ecolog-

ical science, mineral industry, and military. Through deep neural network processing,

the ground or underground targets on the hyperspectral image can be automatically

identified and classified e�ciently. Although there are still many unfavorable factors

that a↵ect the accuracy of the classification, including the low number of labeled hyper-

spectral image data sets, the mutual interference of spectral data from objects in the

images, and the problems caused by the deep neural network’s own characteristics, the

deep neural network model in this thesis has already obtained relatively high accuracy

of classification. Additionally, this model has high scalability and ease of modification,

which means that its structure and function can be further improved in the future. In

short, the model described in this thesis can be regarded as an experimental attempt,

which applies deep neural network on hyperspectral image classification.
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